<<12345>>
6.

Let a,r, s, t be non-zero real numbers. Let  P( at2,2at) , Q , R (ar2, 2ar) and S( as2, 2as) be distinct point on the parabola y2=4ax . Suppose  that PQ is the  focal  chord and  lines QR and PK are parallel , where K is the point (2a,0)

 If st=1 , then the tangent at P  and the normal at S to the parabola meet at a point  whose ordinate is 


A) $\frac{(t^{2}+1)^{2}}{2t^{3}}$

B) $\frac{a(t^{2}+1)^{2}}{2t^{3}}$

C) $\frac{a(t^{2}+1)^{2}}{t^{3}}$

D) $\frac{a(t^{2}+2)^{2}}{t^{3}}$



7.

Let a,r, s, t be non-zero real numbers. Let  P( at2,2at) , Q , R (ar2, 2ar) and S( as2, 2as) be distinct point on the parabola y2=4ax . Suppose  that PQ is the  focal  chord and  lines QR and PK are parallel, where K is the point (2a,0)

The value of r is 


A) $-\frac{1}{t}$

B) $\frac{t^{2}+1}{t}$

C) $\frac{1}{t}$

D) $\frac{t^{2}-1}{t}$



8.

For  $x \epsilon  (0,\pi)$  the equation   sin x+ 2 sin 2x-sin 3x=3 has 


A) Infinitely many solutions

B) three solutions

C) one solution

D) no solution



9.

 Coefficient of x11  in the expansion of  (1+x2)4 (1+x3)7  (1+x4)12   is 


A) 1051

B) 1106

C) 1103

D) 1120



10.

Let f:[0,2]→  R  be a function which is continuous on [0,2] and is differentiable on (0,2)  with f(0)=1.Let   $F(x)=\int_{0}^{x^{2}} f(\sqrt{t}) dt, for x\in [0,2]$ . If  F'(x)= f '(x) for all  x ε (0,2) , then F(2) equal to


A) $e^{2}-1$

B) $e^{4}-1$

C) e-1

D) $e^{4}$



<<12345>>